Oriented Object Detection in Aerial Images Based on the Scaled Smooth L1 Loss Function

نویسندگان

چکیده

Although many state-of-the-art object detectors have been developed, detecting small and densely packed objects with complicated orientations in remote sensing aerial images remains challenging. For detection images, different scales, sizes, appearances, of from categories could most likely enlarge the variance error. Undoubtedly, error should a non-negligible impact on performance. Motivated by above consideration, this paper, we tackled issue, so that improve performance reduce as much possible. By proposing scaled smooth L1 loss function, developed new two-stage detector for named Faster R-CNN-NeXt RoI-Transformer. The proposed function is used bounding box regression makes invariant to scale. This property ensures more reliable backgrounds, leading improved To learn rotated boxes produce accurate locations, RoI-Transformer module employed. necessary because horizontal are inadequate image detection. ResNeXt backbone also adopted detector. Experimental results two popular datasets, DOTA HRSC2016, show significantly affects effective robust, optimal scale factor being around 2.0. Compared other promising oriented methods, our method achieves mAP 70.82 DOTA, an improvement at least 1.26 up 16.49. On 87.1, 0.9 1.4.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Applying Local Cooccurring Patterns for Object Detection from Aerial Images

Developing a spatial searching tool to enhance the search capabilities of large spatial repositories for Geographical Information System (GIS) update has attracted more and more attention. Typically, objects to be detected are represented by many local features or local parts. Testing images are processed by extracting local features which are then matched with the object’s model image. Most ex...

متن کامل

designing unmanned aerial vehicle based on neuro-fuzzy systems

در این پایان نامه، کنترل نرو-فازی در پرنده هدایت پذیر از دور (پهپاد) استفاده شده است ابتدا در روش پیشنهادی اول، کنترل کننده نرو-فازی توسط مجموعه اطلاعات یک کنترل کننده pid به صورت off-line آموزش دیده است و در روش دوم یک کنترل کننده نرو-فازی on-line مبتنی بر شناسایی سیستم توسط شبکه عصبی rbf پیشنهاد شده است. سپس کاربرد این کنترل کننده در پهپاد بررسی شده است و مقایسه ای ما بین کنترل کننده های معمو...

An Appearance-based Approach to Object Recognition in Aerial Images

This report explores the design of \appearance-based" object recognition systems and their application to the analysis of aerial imagery. Our system, in contrast with the more prevalent model-based vision systems, in which explicit three dimensional models of objects and physics-based reasoning about the image formation process are combined, models objects in terms of how they appear to a compu...

متن کامل

Object-oriented Change Detection Based on Weighted Polarimetric Scattering Difference on Polsar Images

For wide application of change detection with SAR imagery, current processing technologies and methods are mostly based on pixels. It is difficult for pixel-based technologies to utilize spatial characteristics of images and topological relations of objects. Object-oriented technology takes objects as processing unit, which takes advantage of the shape and texture information of image. It can g...

متن کامل

On-line boosting-based car detection from aerial images

Car detection from aerial images has been studied for years. However, given a large-scale aerial image with typical car and background appearance variations, robust and efficient car detection is still a challenging problem. In this paper, we present a novel and robust framework for automatic car detection from aerial images. The main contribution is a new on-line boosting algorithm for efficie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Remote Sensing

سال: 2023

ISSN: ['2072-4292']

DOI: https://doi.org/10.3390/rs15051350